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While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than
when on the ground. It is important to model how shielding designs on spacecraft reduce
radiation effective dose pre-flight, and determine whether or not a danger to humans is
presented. However, in order to calculate effective dose, dose equivalent calculations are
needed. Dose equivalent takes into account an absorbed dose of radiation and the biological
effectiveness of ionizing radiation. This is important in preventing long-term, stochastic
radiation effects in humans spending time in space. Monte carlo simulations run with
the particle transport code FLUKA, give absorbed and equivalent dose data for relevant
shielding. The shielding geometry used in the dose calculations is a layered slab design,
consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues
that compose the human body. The results obtained will provide information on how the
shielding performs with many thicknesses of each material in the slab. This allows them
to be directly applicable to modern spacecraft shielding geometries.
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I. Introduction

This paper describes work done from June-August 2010 using computer modeling tools to predict radi-
ation dose and dose equivalent values. These quantities are relevant in calculating radiation effective dose,
which is important in human spaceflight applications.

The current model used to predict dose and dose equivalent is a particle transport code called HZETRN.1

It transports radiation, with a 1-D perspective,through a multi-element shielding slab of varying thickness.
This is a very complicated physical process to model due to the difficulty of predicting secondary particles
generated from radiation-shielding interactions. The radiation is then transported through a region of water
with detectors placed at 25 different depths. The detectors take data such as particle type and fluence, linear
energy transfer, dose, and dose equivalent. Water is used because it closely resembles human body tissue.

Due to the complexity of the modeling process just described, some assurance is needed that the results
HZETRN produces are good. After all, humans will hopefully be occupying these vehicles, and we want our
predictions to be reliable. One way of testing these results is to run the exact same simulation done with
HZETRN with another transport code, in particular a Monte Carlo simulation. In this case the monte carlo
simulation FLUKA2 is known to be better because it includes more physics models, however it takes much
longer to run. When comparing results from the two simulations, if they are very similar, it would be a good
idea to use HZETRN results to calculate effective dose. This would reduce computing time greatly. If the
results differ, and FLUKA is much better, then it should be used in the calculation.

My specific contribution to this project involved modifying a computer code written by Kerry Lee to
write input files for FLUKA. The FLUKA input files are very long and tedious to write by hand. This code
is very convenient, but it needed to be modified for this specific project. My contributions to the code are
listed in the Methods section of this paper.

II. Theory

The prediction of effective dose received, for a given spacecraft design, is a very complex process that
involves many different variables. These variables take into account biological radiation effects, vehicle
specific design and shielding properties, and location of vital organs within the vehicle. In this section I will
briefly describe how each of these variables comes into play when calculating effective dose.

A. Biological Effects of Ionizing Radiation

Ionizing radiation has different effects on biological cells. Some radiation has high enough linear energy
transfer (LET) to completely kill a cell it interacts with. This is not very concerning due to our body’s
ability to get rid of the dead cell and make a new one. In large quantities, very high LET radiation is
concerning due to its ability to kill massive amounts of cells at once; however, it is highly unlikely that a
radiation event of that magnitude will occur in space. The most concerning is ionizing radiation with a LET
capable of damaging a cell, but not killing it. This can cause the cell DNA to mutate, and begin reproducing
as a cancer.

Two types of measurement used in the prediction of effective dose are: absorbed dose (D) and dose
equivalent (HT ).3 Absorbed dose measures the amount of total energy deposited into a given amount
material, and dose equivalent relates absorbed dose in human tissue (T ) to the amount of biological damage
caused by radiation (R). This relation is determined by the weighting factor wR, that characterizes type
and energy of radiation. Dose equivalent is given by the following equation:3
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HT = wRDT,R (1)

B. Vehicle Design and Shielding

In the space environment, radiation threats do not always come from one direction. Therefore, in order to
predict effective dose, the entire spacecraft geometry, structure, and all radiation shielding elements must be
accounted for. This is accomplished by running a ray-tracing model through a computer aided design (CAD)
model of the spacecraft. The ray-trace starts at a point within the spacecraft, and sends many rays outward
in a spherical pattern. The rays represent how much material they pass through, and the type of material.
This information can then be converted into an equivalent thickness of any relevant material, in this case
Aluminum and polyethylene were used. For every ray, this thickness data gives information about how well
the spacecraft is shielded from radiation in that particular direction. This is very useful when calculating
effective dose.

C. Location of Vitals

The final variable taken into account is the location and orientation of a human body within the spacecraft.
This provides information about where vital organs are located, and how vulnerable they are to radiation
within the vehicle. This is important because different organs have different dose limits, depending on their
susceptibility to radiation.

Effective dose (E) is the sum of all the weighted (HT ) for all irradiated tissues and organs. This introduces
a tissue weighting factor wT that takes into account the sensitivity of organs to radiation damage. Effective
dose is then given by the equation:3

E =
∑

T

wT HT (2)

III. Computer Model Design

The particle transport code FLUKA is a good candidate for comparison with HZETRN. It’s 3-D geometry
structure is ideal, and it can support the shielding materials needed in the model. It can also output the
proper data types needed for a good comparison. The next logical step is to build a geometry within FLUKA
that matches the geometry modeled within HZETRN.

A. Geometry

The Geometry design is relatively simple. Figure 1 is a visual representation of what the computer needs to
model. It consists of a two element shielding slab defined within some boundary space, a region of water, a
simple three part detector, and a beam source. The beam source used for this model follows the King solar
particle event spectra.4 This spectrum consists of protons with energies ranging from 1MeV to 1,200MeV.

In order for FLUKA to fully understand the geometry shown in Figure 1, it must be broken down and
built in many pieces. This building process starts with geometric elements such as rectangular parallelepipeds
(RPP) and X-Y planes (XYP). This skeletal structure is then divided into user defined regions. An example
of a region (call it Region 1) is: In-Between XYP1 and XYP2, Inside RPP2. This definition process is
repeated for every region within the geometry. Once the regions are defined, FLUKA needs to know what
materials to assign to each region.

B. Materials

Looking at Figure 1, one can see three distinct materials used in the model: aluminum, polyethylene,
and water. FLUKA has knowledge of a number of elements, but one needs to combine these elements into
materials in a way understood by FLUKA. Different elements can be combined to form any material without
difficulty. The user has a choice to create new materials by giving FLUKA elemental mass fractions, or by
defining the atom or molecule content of the material. Once the necessary materials are defined, they can
be assigned to their proper regions.
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Figure 1. Shield Geometry Design

There are two other materials not shown in the figure that also need to be assigned: vacuum and black-
hole. Black-hole is an imaginary material known to FLUKA that terminates all particles entering it. In the
Figure 1 model case, black-hole would be assigned in the region between RPP1 and RPP2. This ensures
that all particles are terminated there, and FLUKA does not try and keep track of them forever. Vacuum is
exactly what it sounds like, and should be assigned, for this case, in the region containing the beam source.

C. Detectors

The three part detector geometry is simple, and all that is necessary for the relevant quantities to be
measured. Having three planes allows the detector to be divided into two regions. This is necessary for
calculating Linear Energy Transfer(LET) for a particle passing through the detector. The center plane has
another purpose besides acting as a regional divider. It also takes type and fluence data for each particle
crossing its boundary.

FLUKA also follows all particle interactions that occur within the geometry. These interactions create
showers of secondary particles that travel in all directions. Another advantage of having three plane, two
region detectors is the ability to differentiate between forward and backward going particles.

IV. Methods

A. Writing the FLUKA Input File

To build the proper geometry in FLUKA a complicated input file must first be developed. This input file
can be very long, and due to formatting very tedious to write. My mentor, Kerry Lee, developed a code in
2007 to write the input files for FLUKA. This code, called Slab, also submits the input file to FLUKA and
graphs the data using ROOT.5 Slab is very convenient; however, it needed to be modified in various ways.
The primary modifications to Slab are listed in Table 1.

Additions to the Slab code were also necessary. These were added for organizational reasons, and to
ensure efficient data production. The first of these additions allows the code to run on its own to collect data
over a range of thicknesses supplied by the user. The second addition handles all FLUKA output data, and
organizes it in a directory for each thickness combination. The output files and directories are all generically
named. Therefore a legend file is also generated to display what thickness combination is placed in what
directory. These additions were written in such a way that a cluster of machines can run from the same
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Table 1. Slab Code Modifications

Previously Supported Supported After Modification
One Shielding Slab Two Shielding Slab
Al and Fe Shielding Al and Polyethylene Shielding
One Thickness, One Slab X Thicknesses for Two Slab Combination

working directory and not interfere with each other. That is, as long as the user follows the guidelines placed
in the new README file.

B. Dose Equivalent Data Matrices

The FLUKA executable is compiled with two FORTRAN routines named comscw.f and fkbirk.f. These
routines are responsible for calculating Dose and Dose Equivalent from the FLUKA output data. Once this
is done, the object containing the relevant dose and dose equivalent data can be read into an organized
array. Ideally there is one array for each thickness combination run with FLUKA. This then allows for easy
comparison with the HZETRN matrix.

V. Results and Conclusions
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Dose and Dose-Eqivalent in Water with 0.001585g of Poly Shielding and 0.001585g of Al Shielding.

Figure 2. Example of Dose vs. Depth in Water Plot, Thin Shielding

Overall the results from FLUKA were good. They contain reasonable data, and seem to provide sound
dose and dose equivalent predictions. Figure 2 shows a Depth in Water vs. Dose/Dose Equivalent plot for
every detector depth in water, for the shielding configuration with thicknesses of 0.001585 g

cm2 of aluminum
and 0.001585 g

cm2 of polyethylene. Figure 3 contains data from this same configuration, but only for depths
in water up to 1cm. One can see the degrading dose values as the depth in water increases. The statistical
error is denoted by the +/- length from the center of the data bar.
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Figure 3. Dose vs Depth up to 1cm of Water, Thin Shielding

A. Error and Statistics

The error for this thickness combination is fairly good, however it could be better at a few instances. This
is also the thinnest shielding combination, and statistical error should increase with the shielding thickness.
This can be seen in Figure 4. For this data set, the beam source consisted of 5 runs with 15,000 particles per
run. This takes approximately 45 minutes on a Pentium IV processor machine with 1GB of memory. Data
is needed for 25 thickness of each shielding element. This amounts to 625 thickness combinations, with a
total CPU-time close to 1month. Statistics could be improved by running with additional particles, however
this will greatly increase run-time. If better statistics are needed, more computing power will be a necessity.
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Figure 4. Dose vs Depth in Water, Thicker Shielding

B. Final Thoughts

This project can be called a success for many reasons. First, all the objectives outlined in June between
Kerry Lee and myself have been completed. The necessary modifications have been made to the slab code
to accomplish the goal of taking data, comparable with HZETRN data, that can be used in the calculation
of effective dose. A full run of 625 data sets has even been finished allowing for the verification of data.
The only steps left to complete are to input the FLUKA data into a set of arrays, and compare them with
HZETRN data.

Second, I have learned volumes during the process of this internship. I have excelled in learning about
the C++ language, while still completing legitimate work. I have also experienced first hand the support
provided by SRAG to the NASA human spaceflight program. Finally, I have gained more experience working
with a team of scientists trying to accomplish many different tasks. This is probably the most valuable of
all, and I will carry it with me through my career.
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